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Cubic-meter-sized antineutrino detectors can be used to non-intrusively, robustly 

and automatically monitor and safeguard a wide variety of nuclear reactor types, 

including power reactors, research reactors, and plutonium production reactors. 

Since the antineutrino spectra and relative yields of fissioning isotopes depend on 

the isotopic composition of the core, changes in composition can be observed 

without ever directly accessing the core itself. Information from a modest-sized 

antineutrino detector, coupled with the well-understood principles that govern the 

core's evolution in time, can be used to determine whether the reactor is being 

operated in an illegitimate way. A group at Sandia is currently constructing a one  

cubic meter antineutrino detector at the San Onofre reactor site in California to 

demonstrate these principles. 

Reactor safeguards regimes, such as the regime implemented by the International 

Atomic Energy Agency (IAEA) in accordance with the Non-proliferation Treaty (NPT), 

are intended to detect illicit or suspicious uses of these facilities. Depending on the 

regime, examples of illicit use could include unauthorized changes in the rate of 

plutonium production within a reactor, a reduction in the level of irradiation of fuel to 

facilitate later removal of fissile material, or as in the case of IAEA safeguards, the 

actual diversion of fissile material from the reactor.  
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Safeguards monitoring systems are currently in place at about half of the world�s 

power reactors, and at hundreds of research reactors worldwide1. In large part, these 

reactors are now safeguarded by indirect means that do not involve the direct 

measurement of the fissile isotopic content of the reactor, but instead consist primarily 

of semi-annual or annual inspections of coded tags and seals placed on fuel assemblies, 

and measures such as video surveillance of spent fuel cooling ponds. When direct 

measurements do take place, they are implemented offline, before or after fuel is 

introduced into the reactor. These may include the counting of fuel bundles or the 

checking of the enrichment of random samples of fresh or spent fuel rods.  

The technique described here differs from these methods in a fundamental way: 

it provides real-time quantitative information about the reactor core power and its 

isotopic composition, from well outside the core, while the reactor is online. The 

advantages of using antineutrinos for reactor safeguards and monitoring include the 

availability of real-time information on the status of the core, a possible decrease in the 

time to detection of unauthorized use or diversion of fissile material, less intrusiveness, 

and simplified operations from the standpoint of both the reactor operator and the 

safeguards agency. 

While the very small antineutrino interaction cross-section represents a basic 

limitation in the applications discussed here, we will show that, in the specific area of 

reactor safeguards, a conventional detector with an active volume of about one cubic 

meter placed in the vicinity of the core (tens of meters) can provide useful, high-

statistics data to supplement or provide an alternative to present monitoring techniques. 

The wealth of activity in the field of neutrino physics in recent years provides us with 

well-proven, reliable detection techniques.  

Goals for IAEA and other Safeguards Regimes 
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The IAEA safeguards regime, implemented as part of the Nuclear Nonproliferation 

Treaty, is the most widespread and important of existing safeguards regimes. IAEA 

safeguards seek to establish whether a ``significant quantity'' of fissile material has been 

diverted with the ``conversion time''. The definition of significant quantity of material 

depends on the isotope and its physical form, and provides a rough measure of the 

amount of material needed to manufacture a nuclear weapon. The conversion time is the 

IAEA estimate of the time it would take to manufacture an actual weapon, taking into 

account the physical form of the fissile material in question. For plutonium in partially 

irradiated or spent fuel as found in reactor cores, the conversion time is approximately 

1-3 months, and the significant quantity is 8 kg. Antineutrino detection using current 

technology can approach these goals for reactors.  

Though presently not applied, perhaps for lack of enabling technologies, it is 

easy to envision additional useful goals for reactor safeguards that could enhance IAEA 

or other regimes. Examples include direct monitoring of the rate of production of fissile 

material or the degree of irradiation ("burnup") of fuel. The utility of the former 

measurement lies in ensuring that fissile material is not produced at a rate greater than 

specified in a safeguards agreement. Tracking changes in burnup rates is also useful, 

since reducing burnup can facilitate recovery of fissile material (albeit usually at the 

expense of a reduction in the amount of fissile material available for recovery). 

Antineutrino detection offers a unique, non-intrusive, real-time method for 

accomplishing these goals. 

Range of Application 

There were 438 operating power reactors worldwide at the end of 20002. Most are Light 

Water Reactors (LWR) fueled with Low-Enriched Uranium (LEU). About 50 are heavy 

water reactors (HWR) fueled with natural uranium, primarily of the Canadian 

Deuterium Uranium (CANDU) design. Both types of reactors have power ratings 
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ranging from several hundred to about 3000~MWt. There are also about 600 research 

reactors worldwide, with great variations in fueling, power ratings and overall design. 

Most power reactors and many research reactors have high enough power and thus 

antineutrino flux to be amenable to safeguarding with antineutrino detectors3.  

The design of particular antineutrino safeguards system will vary according to 

the reactor power rating, refueling strategy, physical infrastructure and other factors. For 

example, an independent power measurement may be required to fully exploit the 

antineutrino signature as a safeguards tool in some cases. Reactors that are refueled 

online, such as CANDUs, can be continuously monitored for unusual changes in the 

antineutrino count rate. Additional information about startup parameters might be 

needed to gauge the significance of such changes for offline-refueled reactors such as 

LWRs. 

Reactor Safeguards with Antineutrino Detectors 

As a reactor core proceeds through its irradiation cycle, the mass of each isotope varies 

in time. Initially, only uranium is consumed by fission, while plutonium gradually builds 

up and begins to fission as well. In the course of a year or more, the total fissile 

inventory is slowly reduced until the reactor must be refueled. Hence the relative fission 

rates of the isotopes vary significantly throughout the reactor cycle, even when constant 

power is maintained.  

Antineutrino emission in nuclear reactors arises from the β-decay of neutron-rich 

fragments produced in heavy element fissions. Over the last two decades, many 

precision measurements and calculations of the β spectra have been performed4,5,6,7,8,9 in 

support of neutrino oscillation experiments which, in turn, have directly measured 

reactor antineutrino spectra. Current experiments have reached accuracies of a few 
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percent on the absolute antineutrino measurement, (including both reactor flux 

uncertainties and detector systematics).  

In general, the average fission is followed by the production of about 6 

antineutrinos that emerge from the core isotropically and without attenuation. A 

common choice for detection is the (relatively) high probability inverse β -decay 

reaction: 

nepe +→+ +ν .                                                      (1) 

Here the antineutrino (ν ) interacts with free protons (p) present in the detection 

material. The neutron (n) and positron (e+) are detected in close time coincidence, 

providing a dual signature that is robust with respect to the backgrounds that generally 

occur at the few MeV energies characteristic of these antineutrinos. In addition to the 

antineutrino flux, the reaction (1) also allows measurement of the antineutrino energy 

as: 
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that mainly account for the nuclear recoil. The reaction in (1) has an energy-

dependent cross-section and a threshold of ~1.81 MeV. 

 

Figure 1:The detected ν  relative energy spectra. Relative energy spectra of 

ν produced by the fission of 239Pu and 235U, multiplied by the energy-dependent 

cross-section, νσ . The reaction threshold is ~1.81 MeV. 
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Figure 1 shows the energy spectrum of fission antineutrinos, folded with the 

energy-dependent detection cross section of (1) for the two most important fissile 

elements 239Pu and 235U. Because of the spectral differences between these elements, the 

total ν rate measured in the 2-8 MeV range will change significantly as a function of 

time, even at constant power. This rate is shown in Figure 2 for an LEU-fueled reactor 

(2.7% enriched uranium) along with the individual rates for 239Pu and 235U. (Of course, 

only the total rate is actually measured by a detector). The antineutrino rate is fixed by 

the initial enrichment and the neutron flux in the reactor. The latter quantity is adjusted 

with control rods and soluble neutron poisons to regulate criticality and maintain 

thermal power levels (here assumed constant). Though not shown here, contributions 

from other isotopes such as 238U and 241Pu can be accurately accounted for and do not 

change our results. Similar results are also obtained with diverse fuel and reactor types. 

Figure 2: The antineutrino event rate as a function of time. the relative rate of 

ν  events for 239Pu, 235U and the sum of both, as a function of time, from a 

representative LEU fueled power reactor.  

As a rough figure of merit, for the reactor simulated here, a switch of a given 

weight percentage of plutonium in the core to uranium (relative to total fissile content) 

induces a change in the antineutrino count rate of about half this percentage. Thus, in the 

largest commercial power reactors where the fissile content is approximately 3000 kg, a 

measurement accuracy on the antineutrino count rate at below the percent level is 

required to detect diversion of an IAEA significant quantity of 8 kg of plutonium within 

the 1-3 month conversion time for unseparated plutonium. Smaller commercial reactors, 

research and plutonium production reactors may have fissile inventories five to ten 

times smaller or less, so that removal of a significant quantity of plutonium would 

require sensitivity to only a several percent change in fissile content. 

Detector sizes and expected rates 
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The detection of MeV-energy antineutrinos via the reaction (1) has been standard in 

nuclear physics since the early experiments leading to the discovery of the neutrino10. In 

the past 45 years many detectors have been optimized and built in order to reduce 

backgrounds in very large fiducial masses and to improve the precision of the 

measurements. Modern detectors, such as Chooz11 and Palo Verde12, have fiducial 

masses of several tons and have run for a few years with total detector-related 

systematic errors on the antineutrino count rate as low as 1.5%. Without being explicitly 

designed for the purpose, these detectors have run unattended for weeks. There are few 

apparent obstacles to unattended operation for months or longer, as would be desirable 

for safeguards and monitoring purposes. Active media are organic scintillators based on 

solvents such as trimethylbenzene or isopropylbenzene mixed with paraffin oils, with 

very good time stability, compatibility with plastic hardware and modest health hazards. 

For the small-sized detectors needed for nuclear safeguards it is possible to use 

completely bio-compatible scintillators based on phenylxylylethane or di-

isopropylnapthalene, or to use blocks of solid plastic scintillator. 

In the process (1) the ionization signal from the e+ and its annihilation is 

followed by neutron capture, providing, as mentioned, a delayed coincidence that 

substantially reduces backgrounds. The neutron capture time is 170 µsec in simple 

organic scintillators, where the dominant process is MeV) 2.2(γ+→+ dpn . 

Lower backgrounds can be achieved by doping the scintillators with elements 

having large neutron capture cross-sections, such as Gd, Cl or Li. Scintillators loaded 

with 0.1% Gd11,12 have a tight time coincidence (30 µsec) and a higher energy (~8 MeV) 

capture signature. 

Using the well-known cross section for (1) we can estimate the antineutrino 

event rate in a 1000 kg mass of scintillator at 24 m distance from the core of a 3.4~GWt 

power reactor. The detector standoff distance will of course differ depending on the 
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reactor site: the example here is the distance of a detector now under construction at the 

San Onofre nuclear reactor in Southern California. Other reactors may have shorter  

standoff distances. We obtain an interaction rate of 6850 per day and, using a 40 

detection efficiency extracted from Monte Carlo simulations, we are left with a 

measured count rate of 2740 events per day. Our efficiency estimate is consistent with 

that reported for real homogeneous detectors11.   

Figure 3: A representative antineutrino detector for safeguards. Schematic view 

of a possible antineutrino detector for safeguards. Shielding and veto counters 

are not shown. 

As shown in Figure 3, a practical detector could consist of a one meter cube of 

liquid scintillator contained in an acrylic vessel. To simplify the readout, light from 

primary scintillation could be absorbed in wavelength shifting plates and re-emitted (at 

larger wavelength) so that full collection can be achieved with a few photomultipliers 

(PMT's). In our simulation a respectable light yield of ~150 photoelectrons/MeV is 

obtained with 4 5-inch PMT's. The antineutrino detection volume can be sufficiently 

isolated from external gammas and neutrons using a ~50 cm thick layer of water or 

borated polyethylene. A plastic scintillator envelope, similar in shape to the wavelength 

shifters can be used to identify and reject cosmic rays crossing the detector.  

Very accurate predictions of the efficiency and backgrounds in this type of 

detector can be obtained using simulation packages such as GEANT13 together with 

GFLUKA14  (hadronic interactions) and GCALOR15 (n transport). With the few-meter  

concrete shielding from the reactor reducing artificial neutron backgrounds to ambient 

levels, we find that the main background arises from cosmic-muon induced spallation 

neutrons that present the same time coincident signature as the antineutrino events. For a 

2~m overhead concrete cosmic-ray shielding this background is estimated at 140 per 

day, or about 5% of the signal. Random coincidences of γ-rays (and neutrons) from 
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natural radioactivity contribute a much lower rate and are neglected here. Finally, in 

many plants there are clusters of more than one reactor and hence a �background� will 

arise from the antineutrinos coming from adjacent reactors. In general for multiple 

reactor plants the distance between different cores is of order 100 m or more, so that this 

background is small, and can in any case be directly measured by placing an 

antineutrino detector near each core. 

Present low-energy antineutrino detectors have reached accuracies on the 

absolute efficiency of better than 2.5%. Much of this uncertainty vanishes for relative 

measurements, such as needed for many of the safeguards goals of interest here. 

Statistical error scales with time (t) as 1/ t , so that for 10000 events per day, 

(achievable with a cubic meter detector about 10 meters from the core of a 3 GWt power 

reactor) 1% statistical accuracy is reached with a day of data and 0.1% in 100 days. 

Examples of Specific Safeguards Applications 

We now consider an example of how to detect the removal of fissile material from a 

core using an antineutrino measurement. We will rely on the changes in antineutrino 

rate occuring when Pu-bearing fuel assemblies are replaced with fresh fuel. For 

concreteness we assume a core with 1/3 of its fuel assemblies containing fresh LEU, 1/3 

containing fuel irradiated for 18 months, and 1/3 containing fuel irradiated for 36 

months, as is typical immediately after refueling in a reactor that has reached its 

equilibrium operating mode. Thus, in this case, even the initial core has significant Pu 

content. On the 250th day of reactor operation, fuel assemblies containing 8 or 30 kg of 

plutonium are diverted and replaced with fresh fuel assemblies. We chose a simple non-

parametric hypothesis test, designed for sensitivity to systematic shifts in data from an 

expected mean16, to calculate the probability that the measured antineutrino rate 

disagrees with the rate predicted by a precise core simulation (assuming no diversion) 

after a given period of time. Disagreement is taken as evidence that diversion has 
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occurred. The example here was derived assuming a 1 ton detector at 10 m standoff 

distance from a 3 GWt power reactor. The results are shown in Table 1. 

 

Fissile 

Inventory  

(kg) 

Amount of Pu 

Diverted  

(kg) 

Probability of Detection within the indicated 

number of days 

                             30 days   60 days   90 days     

2700               8              0.82      0.92     0.998  

2700               30          >0.999   >0.999  >0.999 

Table 1: The probability that the indicated change in Pu inventory will be 

detected by a 1 ton detector, at 10 meters standoff from a 3 GWt reactor, within 

the indicated period of time. The IAEA goal is the detection of 8 kg of Pu in 1-3 

months with a 95% probability. 

In this example, only the difference between the antineutrino count rate at startup 

and on subsequent days is measured. This reduces systematic errors but assumes that the 

initial fuel loading and fission rate in the reactor are precisely known and provided by 

independent means. Deriving the fission rate from the absolute antineutrino count rate 

itself is of course also possible, but introduces the few-percent systematic biases already 

mentioned. Another limitation of the method derives from the fact that gathering of 

statistics can occur only when the reactor is critical. In practice, criticality is maintained 

during refueling only in so-called "on-line refueled" reactors. In the more common off-

line refueled reactor, a prolonged shutdown would have the effect of delaying the 
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application of our test for detecting diversion, since, for example, diversion could occur 

at the beginning of a month-long shutdown, while the antineutrino measurement does 

not commence until startup. 

Antineutrino detection can also be used as a non-intrusive way to meet the other 

goals mentioned earlier, such as detecting gross changes in reactor power levels or 

changes in fuel design. A reactor operator seeking to acquire plutonium for weapons 

could choose to increase the reactor power, thereby increasing the plutonium production 

rate. Alternatively, a hypothetical diverter of material might seek to facilitate plutonium 

recovery at the expense of production rate by lowering the reactor power level. Finally, 

an operator could increase the plutonium production rate by adding fuel with an 

increased fraction of U-238, adjusting other reactor operating parameters to preserve 

criticality and the gross power level. All of these diversion strategies are detectable, at 

some level, through measurement of antineutrinos. Taking as an example the first and 

simplest case of increased power levels, consider a 10~MWt tank-type heavy water 

research reactor fueled with natural uranium fuel, similar in design to the Japanese JRR-

3 reactor17. This reactor produces about 2 kg of fissile plutonium per year. A 44 MWt 

reactor with the same fuel and similar design, such as the German FR-2 reactor, 

produces about 5 times as much plutonium per year: we can imagine that a reactor of the 

first type would be covertly run at the power levels of the second and the excess 

Plutonium used for weapon production. For such research reactors with transverse 

dimensions of a meter or so, the detector could be located as close as 10 m from the 

core, so that (in this example) the increased power would change the absolute 

antineutrino rate from 50 to about 220 per day, providing clear evidence for a change in 

operations without intrusive inspection of the reactor. 

Conclusions 
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Our analysis shows that antineutrino detection holds considerable promise as a novel 

tool for monitoring many types of nuclear reactors. The potential applicability of the 

method extends to hundreds of reactors worldwide. The advances in design and 

operation of low-energy antineutrino detectors, together with the experience 

accumulated in predicting reactor antineutrino energy spectra make the technique 

simple, cheap and reliable. These important features will be demonstrated by a pilot 

detector which Sandia National Laboratories� California branch is now installing at the 

San Onofre reactor in California. 
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